top of page

Welcome to IWU Laboratory Astrophysics

Millimeter-wave Astronomy

My research revolves around millimeter-wavelength radiation that comes to us from space. By mm wavelengths, I mean light with wavelengths in the range 0.2 mm to 5 mm. When you look at a dark patch of sky at night, the visible light within that patch of sky is dominated by astronomical objects -- usually stars. This is because nothing else between us and the star emits visible light (0.0004 to 0.0007 mm wavelengths). On the other hand, if you could look at a patch of night sky using mm-wavelength light, what you see will be dominated by terrestrial objects such as our atmosphere, clouds within it, and our own eyes because they all radiate mm-wave light. Given this difficulty, why would anyone want to look at astronomical objects using mm wavelengths?

There are two reasons: First, the oldest light in the universe, created in the big bang, is brightest at mm wavelengths. This radiation, known as the Cosmic Microwave Background is the original reason for the existence of mm-wave astronomy. Second, many interesting astronomical environments such as stellar "nurseries" and very young galaxies are enveloped by dust, which blocks visible light from getting to us. However, this cosmic dust emits mm-wave radiation. Figure 1 below shows an example of this effect. Therefore, mm-wave astronomy holds the key to uncovering secrets about such environments.

Figure 1: The color photograph is a visible-light image of a rich cluster of galaxies (Abell 1835). The overlaid contours indicate the mm-wave brightness within this cluster. As you can see, of the four galaxies that are brightest in mm-waves, three are either very faint or invisible with visible light. Image taken from Blain et al, Physics Reports, 369, 111, 2002.

RECENT ARTICLES

Check back soon
Once posts are published, you’ll see them here.
bottom of page